We created this Rust Cheat Sheet initially for students of Jayson Lennon's Rust Bootcamp - Rust Programming: The Complete Developer's Guide.
But we're now sharing it with any and all Developers that want to learn and remember some of the key functions and concepts of Rust, and have a quick reference guide to the fundamentals of Rust.
We guarantee this is the best and most comprehensive Rust Cheat Sheet you can find.
If you’ve stumbled across this cheatsheet and are just starting to learn Rust, you've made a great choice!
Rust is a super productive, super safe, and super fast language. This has made it the most loved programming language amongst developers and it's a great language to learn if you're interested in becoming a Backend Developer or Fullstack Developer.
However, if you're stuck in an endless cycle of YouTube tutorials and want to start building real world projects, become a professional developer, have fun and actually get hired, then come Skillzbooster.
You'll learn Rust from Jayson (an actual industry professional) alongside other students in our private community.
Just want the cheatsheet? No problem! Please enjoy and if you'd like to submit any suggestions, feel free to email us at support@skillzbooster.com
Rustup
is used to install and manage Rust toolchains. Toolchains are complete installations of Rust compiler and tools.
Command | Description |
---|---|
rustup show | Show currently installed & active toolchains |
rustup update | Update all toolchains |
rustup default TOOLCHAIN | Set the default toolchain |
rustup component list | List available components |
rustup component add NAME | Add a component (like Clippy or offline docs) |
rustup target list | List available compilation targets |
rustup target add NAME | Add a compilation target |
Cargo
is a tool used to build and run Rust projects.
Command | Description |
---|---|
cargo init | Create a new binary project |
cargo init --lib | Create a new library project |
cargo check | Check code for errors |
cargo clippy | Run code linter (use rustup component add clippy to install) |
cargo doc | Generate documentation |
cargo run | Run the project |
cargo --bin NAME | Run a specific project binary |
cargo build | Build everything in debug mode |
cargo build --bin NAME | Build a specific binary in debug mode |
cargo build --release | Bulld everything in release mode |
cargo build --target NAME | Build for a specific target |
cargo --explain CODE | Detailed information regarding an compiler error code |
cargo test | Run all tests |
cargo test TEST_NAME | Run a specific test |
cargo test --doc | Run doctests only |
cargo test --examples | Run tests for example code only |
cargo bench | Run benchmarks |
Rust has support for doc comments using the rustdoc
tool. This tool can be invoked using cargo doc
and it will generate HTML documentation for your crate. In addition to generating documentation, the tool will also test your example code.
/// Documentation comments use triple slashes.
///
/// They are parsed in markdown format, so things
/// like headers, tables, task lists, and links to other types
/// can be included in the documentation.
///
/// Example code can also be included in doc comments with
/// three backticks (`). All example code in documentation is
/// tested with `cargo test` (this only applies to library crates).
fn is_local_phone_number(num: &str) -> bool {
use regex::Regex;
let re = Regex::new(r"[0-9]{3}-[0-9]{4}").unwrap();
re.is_match(num)
}
Operator | Description |
---|---|
+ | add |
- | subtract |
* | multiply |
/ | divide |
% | remainder / modulo |
+= | add and assign |
-= | subtract and assign |
*= | multiply and assign |
/= | divide and assign |
%= | remainder / modulo and assign |
Operator | Description |
---|---|
== | equal |
!= | not equal |
< | less than |
<= | less than or equal |
> | greater than |
>= | greater than or equal |
Operator | Description |
---|---|
&& | and |
|| | or |
! | not |
Operator | Description |
---|---|
& | and |
| | or |
^ | xor |
<< | left shift |
>> | right shift |
&= | and and assign |
|= | or and assign |
^= | xor and assign |
<<= | left shift and assign |
>>= | right shift and assign |
Type | Default | Range |
---|---|---|
i8 | 0 | -128..127 |
i16 | 0 | -32768..32767 |
i32 | 0 | -2147483648..2147483647 |
i64 | 0 | -9223372036854775808..9223372036854775807 |
i128 | 0 | min: -170141183460469231731687303715884105728 |
i128 | 0 | max: 170141183460469231731687303715884105727 |
isize | 0 | <pointer size on target architecture> |
Type | Default | Range |
---|---|---|
u8 | 0 | 0..255 |
u16 | 0 | 0..65535 |
u32 | 0 | 0..4294967295 |
u64 | 0 | 0..18446744073709551615 |
u128 | 0 | 0..340282366920938463463374607431768211455 |
usize | 0 | <pointer size on target architecture> |
Type | Default | Notes |
---|---|---|
f32 | 0 | 32-bit floating point |
f64 | 0 | 64-bit floating point |
Type | Notes |
---|---|
char | Unicode scalar value. Create with single quotes '' |
String | UTF-8-encoded string |
&str | Slice into String / Slice into a static str . Create with double quotes "" or r#""# for a raw mode (no escape sequences, can use double quotes) |
OsString | Platform-native string |
OsStr | Borrowed OsString |
CString | C-compatible nul-terminated string |
CStr | Borrowed CString |
Type | Notes |
---|---|
bool | true or false |
unit | () No value / Meaningless value |
fn | Function pointer |
tuple | Finite length sequence |
array | Fixed-sized array |
slice | Dynamically-sized view into a contiguous sequence |
// `let` will create a new variable binding
let foo = 1;
// bindings are immutable by default
foo = 2; // ERROR: cannot assign; `foo` not mutable
let mut bar = 1; // create mutable binding
bar = 2; // OK to mutate
let baz = 'a'; // use single quotes to create a character
let baz = "ok"; // use double quotes to create a string
// variables can be shadowed, so these lines have been valid
let baz = 42; // `baz` is now an integer; 'a' and "ok" no longer accessible
// Rust infers types, but you can use annotations as well
let foo: i32 = 50; // set `foo` to i32
let foo: u8 = 100; // set `foo` to u8
// let foo: u8 = 256; // ERROR: 256 too large to fit in u8
let bar = 14.5_f32; // underscore can be used to set numeric type...
let bar = 99_u8;
let bar = 1_234_567; // ...and also to make it easier to read long numbers
let baz; // variables can start uninitialized, but they must be set before usage
// let foo = baz; // ERROR: possibly uninitialized.
baz = 0; // `baz` is now initialized
// baz = 1; // ERROR: didn't declare baz as mutable
// naming convention:
let use_snake_case_for_variables = ();
// `const` will create a new constant value
const PEACE: char = '☮'; // type annotations are required
const MY_CONST: i32 = 4; // naming conventions is SCREAMING_SNAKE_CASE
// const UNINIT_CONST: usize; // ERROR: must have initial value for constants
// use `once_cell` crate if you need lazy initialization of a constant
use once_cell::sync::OnceCell;
const HOME_DIR: OnceCell<String> = OnceCell::new();
// use .set to set the value (can only be done once)
HOME_DIR.set(std::env::var("HOME").expect("HOME not set"));
// use .get to retrieve the value
HOME_DIR.get().unwrap();
Type aliases allow long types to be represented in a more compact format.
// use `type` to create a new type alias
type Foo = Bar;
type Miles = u64;
type Centimeters = u64;
type Callbacks = HashMap<String, Box<dyn Fn(i32, i32) -> i32>>;
struct Contact {
name: String,
phone: String,
}
type ContactName = String;
// type aliases can contain other type aliases
type ContactIndex = HashMap<ContactName, Contact>;
// type aliases can be used anywhere a type can be used
fn add_contact(index: &mut ContactIndex, contact: Contact) {
index.insert(contact.name.to_owned(), contact);
}
// type aliases can also contain lifetimes ...
type BorrowedItems<'a> = Vec<&'a str>;
// ... and also contain generic types
type GenericThings<T> = Vec<Thing<T>>;
"New Types" are existing types wrapped up in a new type. This can be used to implement traits for types that are defined outside of your crate and can be used for stricter compile-time type checking.
// This block uses type aliases instead of New Types:
{
type Centimeters = f64;
type Kilograms = f64;
type Celsius = f64;
fn add_distance(a: Centimeters, b: Centimeters) -> Centimeters {
a + b
}
fn add_weight(a: Kilograms, b: Kilograms) -> Kilograms {
a + b
}
fn add_temperature(a: Celsius, b: Celsius) -> Celsius {
a + b
}
let length = 20.0;
let weight = 90.0;
let temp = 27.0;
// Since type aliases are the same as their underlying type,
// it's possible to accidentally use the wrong data as seen here:
let distance = add_distance(weight, 10.0);
let total_weight = add_weight(temp, 20.0);
let new_temp = add_temperature(length, 5.0);
}
// This block uses new types instead of type aliases:
{
// create 3 tuple structs as new types, each wrapping f64
struct Centimeters(f64);
struct Kilograms(f64);
struct Celsius(f64);
fn add_distance(a: Centimeters, b: Centimeters) -> Centimeters {
// access the field using .0
Centimeters(a.0 + b.0)
}
fn add_weight(a: Kilograms, b: Kilograms) -> Kilograms {
Kilograms(a.0 + b.0)
}
fn add_temperature(a: Celsius, b: Celsius) -> Celsius {
Celsius(a.0 + b.0)
}
// the type must be specified
let length = Centimeters(20.0);
let weight = Kilograms(90.0);
let temp = Celsius(27.0);
let distance = add_distance(length, Centimeters(10.0));
let total_weight = add_weight(weight, Kilograms(20.0));
let new_temp = add_temperature(temp, Celsius(5.0));
// using the wrong type is now a compiler error:
// let distance = add_distance(weight, Centimeters(10.0));
// let total_weight = add_weight(temp, Kilograms(20.0));
// let new_temp = add_temperature(length, Celsius(5.0));
}
Functions are fundamental to programming in Rust. Signatures require type annotations for all input parameters and all output types. Functions evaluate their bodies as an expression, so data can be returned without using the return
keyword.
// use the `fn` keyword to create a function
fn func_name() { /* body */ }
// type annotations required for all parameters
fn print(msg: &str) {
println!("{msg}");
}
// use -> to return values
fn sum(a: i32, b: i32) -> i32 {
a + b // `return` keyword optional
}
sum(1, 2); // call a function
// `main` is the entry point to all Rust programs
fn main() {}
// functions can be nested
fn outer() -> u32 {
fn inner() -> u32 { 42 }
inner() // call nested function & return the result
}
// use `pub` to make a function public
pub fn foo() {}
// naming convention:
fn snake_case_for_functions() {}
Closures are similar to functions but offer additional capabilities. They capture (or "close over") their environment which allows them to capture variables without needing to explicitly supply them via parameters.
Type | Notes |
---|---|
Fn | Closure can be called any number of times |
FnMut | Closure can mutate values |
FnOnce | Closure can only be called one time |
// use pipes to create closures
let hello = || println!("hi");
// parameters to closures go between the pipes
let msg = |msg| println!("{msg}");
// closures are called just like a function
msg("hello");
// type annotations can be provided...
let sum = |a: i32, b: i32| -> i32 { a + b };
// ...but they are optional
let sum = |a, b| a + b;
let four = sum(2, 2);
assert_eq!(four, 4);
// closures can be passed to functions using the `dyn` keyword
fn take_closure(clos: &dyn Fn()) {
clos();
}
let hello = || println!("hi");
take_closure(&hello);
// use the `move` keyword to move values into the closure
let hi = String::from("hi");
let hello = move || println!("{hi}");
// `hi` can no longer be used because it was moved into `hello`
Control flow allows code to branch to different sections, or to repeat an action multiple times. Rust provides multiple control flow mechanisms to use for different situations.
if
checks if a condition evalutes to true
and if so, will execute a specific branch of code.
if some_bool { /* body */ }
if one && another {
// when true
} else {
// when false
}
if a || (b && c) {
// when one of the above
} else if d {
// when d
} else {
// none are true
}
// `if` is an expression, so it can be assigned to a variable
let (min, max, num) = (0, 10, 12);
let num = if num > max {
max
} else if num < min {
min
} else {
num
};
assert_eq!(num, 10);
if let
will destructure data only if it matches the provided pattern. It is commonly used to operate on data within an Option
or Result
.
let something = Some(1);
if let Some(inner) = something {
// use `inner` data
assert_eq!(inner, 1);
}
enum Foo {
Bar,
Baz
}
let bar = Foo::Bar;
if let Foo::Baz = bar {
// when bar == Foo::Baz
} else {
// anything else
}
// `if let` is an expression, so it can be assigned to a variable
let maybe_num = Some(1);
let definitely_num = if let Some(num) = maybe_num { num } else { 10 };
assert_eq!(definitely_num, 1);
Match
provides exhaustive pattern matching. This allows the compiler to ensure that every possible case is handled and therefore reduces runtime errors.
let num = 0;
match num {
// ... on a single value
0 => println!("zero"),
// ... on multiple values
1 | 2 | 3 => println!("1, 2, or 3"),
// ... on a range
4..=9 => println!("4 through 9"),
// ... with a guard
n if n >= 10 && n <= 20 => println!("{n} is between 10 and 20"),
// ... using a binding
n @ 21..=30 => println!("{n} is between 21 and 30"),
// ... anything else
_ => println!("number is ignored"),
}
// `match` is an expression, so it will evaluate and can be assigned
let num = 0;
let msg = match num {
0 => "zero",
1 => "one",
_ => "other",
};
assert_eq!(msg, "zero");
while
will continually execute code as long as a condition is true.
// must be mutable so it can be modified in the loop
let mut i = 0;
// as long as `i` is less than 10, execute the body
while i < 10 {
if i == 5 {
break; // completely stop execution of the loop
}
if i == 8 {
continue; // stop execution of this iteration, restart from `while`
}
// don't forget to adjust `i`, otherwise the loop will never terminate
i += 1;
}
// `while` loops can be labeled for clarity and must start with single quote (')
let mut r = 0;
let mut c = 0;
// label named 'row
'row: while r < 10 {
// label named 'col
'col: while c < 10 {
if c == 3 {
break 'row; // break from 'row, terminating the entire loop
}
if c == 4 {
continue 'row; // stop current 'col iteration and continue from 'row
}
if c == 5 {
continue 'col; // stop current 'col iteration and continue from 'col
}
c += 1;
}
r += 1;
}
while let
will continue looping as long as a pattern match is successful. The let
portion of while let
is similar to if let
: it can be used to destructure data for utilization in the loop.
let mut maybe = Some(10);
// if `maybe` is a `Some`, bind the inner data to `value` and execute the loop
while let Some(value) = maybe {
println!("{maybe:?}");
if value == 1 {
// loop will exit on next iteration
// because the pattern match will fail
maybe = None;
} else {
maybe = Some(value - 1);
}
}
Rust's for
loop is to iterate over collections that implement the Iterator
trait.
// iterate through a collection
let numbers = vec![1, 2, 3];
for num in numbers {
// values are moved into this loop
}
// .into_iter() is implicitly called when using `for`
let numbers = vec![1, 2, 3];
for num in numbers.into_iter() {
// values are moved into this loop
}
// use .iter() to borrow the values
let numbers = vec![1, 2, 3];
for num in numbers.iter() {
// &1
// &2
// &3
}
// ranges can be used to iterate over numbers
for i in 1..3 { // exclusive range
// 1
// 2
}
The loop
keyword is used for infinite loops. Prefer using loop
instead of while
when you specifically want to loop endlessly.
loop { /* forever */ }
// loops can be labled
'outer: loop {
'inner: loop {
continue 'outer; // immediately begin the next 'outer loop
break 'inner; // exit out of just the 'inner loop
}
}
// loops are expressions
let mut iterations = 0;
let total = loop {
iterations += 1;
if iterations == 5 {
// using `break` with a value will evaluate the loop
break iterations;
}
};
// total == 5
Structures allow data to be grouped into a single unit.
struct Foo; // define a structure containing no data
let foo = Foo; // create a new `Foo`
struct Dimension(i32, i32, i32); // define a "tuple struct" containing 3 data points
let container = Dimension(1, 2, 3); // create a new `Dimension`
let (w, d, h) = (container.0, container.1, container.2);
// w, d, h, now accessible
// define a structure containing two pieces of information
struct Baz {
field_1: i32, // an i32
field_2: bool, // a bool
}
// create a new `Baz`
let baz = Baz {
field_1: 0, // all fields must be defined
field_2: true,
};
impl
blocks allow functionality to be associated with a structure or enumeration.
struct Bar {
inner: bool,
}
// `impl` keyword to implement functionality
impl Bar {
// `Self` is an alias for the name of the structure
pub fn new() -> Self {
// create a new `Bar`
Self { inner: false }
}
// `pub` (public) functions are accessible outside the module
pub fn make_bar() -> Bar {
Bar { inner: false }
}
// use `&self` to borrow an instance of `Bar`
fn is_true(&self) -> bool {
self.inner
}
// use `&mut self` to mutably borrow an instance of `Bar`
fn make_true(&mut self) {
self.inner = true;
}
// use `self` to move data out of `Bar`
fn into_inner(self) -> bool {
// `Bar` will be destroyed after returning `self.inner`
self.inner
}
}
let mut bar = Bar::new(); // make a new `Bar`
bar.make_true(); // change the inner value
assert_eq!(bar.is_true(), true); // get the inner value
let value = bar.into_inner(); // move the inner value out of `Bar`
// `bar` was moved into `bar.into_inner()` and can no longer be used
Structures can be used within match
expressions and all or some of a structure's values can be matched upon.
struct Point {
x: i32,
y: i32,
}
let origin = Point { x: 0, y: 0 };
match origin {
// match when ...
// ... x == 0 && y == 0
Point { x: 0, y: 0 } => (),
// ... x == 0 and then ignore y
Point { x: 0, .. } => (),
// ... y == 0 and then ignore x
Point { y: 0, .. } => (),
// ... x == 0 and then capture y while checking if y == 2; bind y
Point { x: 0, y } if y == 2 => println!("{y}"),
// ... the product of x and y is 100; bind x and y
Point { x, y } if x * y == 100 => println!("({x},{y})"),
// ... none of the above are satisfied; bind x and y
Point { x, y } => println!("({x},{y})"),
// ... none of the above are satisfied while also ignoring x and y
// (this will never match because `Point {x, y}` matches everything)
_ => (),
}
Destructuring assignment allows structure fields to be accessed based on patterns. Doing so moves data out of the structure.
struct Member {
name: String,
address: String,
phone: String,
}
let m = Member {
name: "foo".to_string(),
address: "bar".to_string(),
phone: "phone".to_string(),
};
// move `name` out of the structure; ignore the rest
let Member { name, .. } = m;
// move `name` out of the structure; bind to `id`; ignore the rest
let Member { name: id, .. } = m;
// move `name` out of the structure; bind to `id`
let id = m.name;
Rust enumerations can have multiple choices, called variants, with each variant optionally containing data. Enumerations can only represent one variant at a time and are useful for storing data based on different conditions. Example use cases include messages, options to functions, and different types of errors.
impl
blocks can also be used on enumerations.
// a structure wrapping a usize which represents an error code
struct ErrorCode(usize);
// enumerations are created with the `enum` keyword
enum ProgramError {
// a single variant
EmptyInput,
// a variant containing String data
InvalidInput(String),
// a variant containing a struct
Code(ErrorCode),
}
// create one ProgramError of each variant
let empty = ProgramError::EmptyInput;
let invalid = ProgramError::InvalidInput(String::from("whoops!"));
let error_code = ProgramError::Code(ErrorCode(9));
enum ProgramError {
// a single variant
EmptyInput,
// a variant containing String data
InvalidInput(String),
// a variant containing a struct
Code(ErrorCode),
}
let some_error: ProgramError = some_fallible_fn();
match some_error {
// match on the ...
// ... EmptyInput variant
ProgramError::EmptyInput => (),
// ... InvalidInput variant only when the String data is == "123"; bind `input`
ProgramError::InvalidInput(input) if input == "123" => (),
// ... InvalidInput variant containing any other String data not capture above; bind `input`
ProgramError::InvalidInput(input) => (),
// ... Code variant having an ErrorCode of 1
ProgramError::Code(ErrorCode(1)) => (),
// ... Code variant having any other ErrorCode not captured above; bind `other`
ProgramError::Code(other) => (),
}
// enumeration variant names can be brought into scope with `use` ...
use ProgramError::*;
match some_error {
// ... only need to specify the variant names now
EmptyInput => (),
InvalidInput(input) if input == "123" => (),
InvalidInput(input) => (),
Code(ErrorCode(1)) => (),
Code(other) => (),
}
Tuples offer a way to group unrelated data into an anonymous data type. Since tuples are anonymous, try to keep the number of elements limited to avoid ambiguities.
// create a new tuple named `tup` containing 4 pieces of data
let tup = ('a', 'b', 1, 2);
// tuple members are accessed by index
assert_eq!(tup.0, 'a');
assert_eq!(tup.1, 'b');
assert_eq!(tup.2, 1);
assert_eq!(tup.3, 2);
// tuples can be destructured into individual variables
let (a, b, one, two) = (tup.0, tup.1, tup.2, tup.3);
let (a, b, one, two) = ('a', 'b', 1, 2);
// a, b, one, two now can be used as individual variables
// tuple data types are just existing types surrounded by parentheses
fn double(point: (i32, i32)) -> (i32, i32) {
(point.0 * 2, point.1 * 2)
}
Arrays in Rust are fixed size. Most of the time you'll want to work with a slice
or Vector
, but arrays can be useful with fixed buffer sizes.
let array = [0; 3]; // array size 3, all elements initialized to 0
let array: [i32; 5] = [1, 2, 3, 4, 5];
let slice: &[i32] = &array[..];
Slices are views into a chunk of contiguous memory. They provide convenient high-performance operations for existing data.
let mut nums = vec![1, 2, 3, 4, 5];
let num_slice = &mut nums[..]; // make a slice out of the Vector
num_slice.first(); // Some(&1)
num_slice.last(); // Some(&5)
num_slice.reverse(); // &[5, 4, 3, 2, 1]
num_slice.sort(); // &[1, 2, 3, 4, 5]
// get a view of "chunks" having 2 elements each
let mut chunks = num_slice.chunks(2);
chunks.next(); // Some(&[1, 2])
chunks.next(); // Some(&[3, 4])
chunks.next(); // Some(&[5])
Slice patterns allow matching on slices given specific conditions while also ensuring no indexing errors occur.
let chars = vec!['A', 'B', 'C', 'D'];
// two ways to create a slice from a Vector
let char_slice = &chars[..];
let char_slice = chars.as_slice();
match char_slice {
// match ...
// ... the first and last element. minimum element count == 2
[first, .., last] => println!("{first}, {last}"),
// ... one and only one element
[single] => println!("{single}"),
// ... an empty slice
[] => (),
}
match char_slice {
// match ...
// ... the first two elements. minimum elements == 2
[one, two, ..] => println!("{one}, {two}"),
// ... the last element. minimum elements == 1
[.., last] => println!("{last}"),
// ... an empty slice
[] => (),
}
let nums = vec![7, 8, 9];
match nums.as_slice() {
// match ...
// First element only if element is == 1 or == 2 or == 3,
// with remaining slice bound to `rest`. minimum elements == 1
[first @ 1..=3, rest @ ..] => println!("{rest:?}"),
// ... one element, only if == 5 or == 6
[single] if single == &5 || single == &6 => (),
// ... two and only two elements
[a, b] => (),
// Two-element slices are captured in the previous match
// arm, so this arm will match either:
// * One element
// * More than two elements
[s @ ..] => println!("one element, or 2+ elements {s:?}"),
// ... empty slice
[] => (),
}
Rust doesn't have the concept of null
, but the Option
type is a more powerful alternative. Existence of a value is Some
and abscense of a value is None
. Semantically, Option
is used when there is the possibility of some data not existing, such as "no search results found".
// Option in the standard library is defined as a generic enumeration:
enum Option<T> {
Some(T), // data exists
None, // no data exists
}
// an Option's variants are available for use without specifying Option::Some / Option::None
// create an Option containing usize data
let maybe_number: Option<usize> = Some(1);
// add 1 to the data, but only if the option is `Some` (this is a no-op if it is `None`)
let plus_one: Option<usize> = maybe_number.map(|num| num + 1);
// `if let` can be used to access the inner value of an Option
if let Some(num) = maybe_number {
// use `num`
} else {
// we have `None`
}
// Options can be used with `match`
match maybe_number {
// match when ...
// ... there is some data and it is == 1
Some(1) => (),
// ... there is some data not covered above; bind the value to `n`
Some(n) => (),
// ... there is no data
None => (),
}
// since `if let` is an expression, we can use it to conditionally destructure an Option
let msg = if let Some(num) = maybe_number {
format!("We have a {num}")
} else {
format!("We have None")
};
assert_eq!(msg, "We have a 1");
// combinators can be used to easily manipulate Options
let maybe_number = Some(3);
let odd_only = maybe_number // take `maybe_number`
.and_then(|n| Some(n * 3)) // then access the inner value, multiply by 3, and make a new Option
.map(|n| n - 1) // then take the inner value and subtract 1
.filter(|n| n % 2 == 1) // then if the inner value is odd, keep it
.unwrap_or(1); // then unwrap the inner value if it exists; otherwise use 1
assert_eq!(odd_only, 1);
// same as above but with named functions instead of inline closures
let maybe_number = Some(4);
let odd_only = maybe_number // take `maybe_number`
.and_then(triple) // then run the `triple` function with the inner value
.map(minus_one) // then transform the inner value with the `minus_one` function
.filter(is_odd) // then filter the value using the `is_odd` function
.unwrap_or(1); // then unwrap the inner value if it exists; otherwise use 1
assert_eq!(odd_only, 11);
fn triple(n: i32) -> Option<i32> {
Some(n * 3)
}
fn minus_one(n: i32) -> i32 {
n - 1
}
fn is_odd(n: &i32) -> bool {
n % 2 == 1
}
Rust doesn't have exceptions. All errors are handled using a return value and the Result
type. Helper crates are available to automatically generate errors and make propagation easier:
anyhow
/ eyre
/ miette
: use in binary projects to easily propagate any type of errorthiserror
: use in library projects to easily create specific error types// Result in the standard library is defined as a generic enumeration:
enum Result<T, E> {
Ok(T), // operation succeeded
Err(E), // operation failed
}
// a Results's variants are available for use without specifying Result::Ok / Result::Err
// create a Result having a success type of i32 and an error type of String
let maybe_number: Result<i32, String> = Ok(11);
// Combinators can be used to easily manipulate Results. The following sequence
// transformed the inner value by multiplying it by 3 if it is an Ok. If
// `maybe_number` is an Err then the error returned will be the supplied String.
let maybe_number = maybe_number
.map(|n| n * 3)
.map_err(|e| String::from("don't have a number"));
// We can use `if let` to conditionally destructure a Result.
// Here we are specifically looking for an error to report.
if let Err(e) = maybe_number.as_ref() {
eprintln!("error: {e}");
}
// Results and Options can be changed back and forth using `.ok`
let odd_only = maybe_number // take `maybe_number`
.ok() // transform it into an Option
.filter(|n| n % 2 == 1) // apply a filter
.ok_or_else(|| // transform the Option back into a Result
String::from("not odd!") // if the Option is None, use this String for the Err
);
// `match` is commonly used when working with Results
match odd_only {
Ok(odd) => println!("odd number: {odd}"),
Err(e) => eprintln!("error: {e}"),
}
Results
can be verbose and cumbersome to use when there are multiple failure points. The question mark operator (?
) makes Result
easier to work with by doing one of two things:
Ok
: unwrap the valueErr
: map the error to the specified Err
return type and then return from the functionuse std::error::Error;
use std::fs::File;
use std::io::{self, Read};
use std::path::Path;
// This function has 3 failure points and uses the question mark operator
// to automatically propagate appropriate errors.
fn read_num_using_questionmark(path: &Path) -> Result<u8, Box<dyn Error>> {
// make a buffer
let mut buffer = String::new();
// Using the `?` will automatically give us an open file on
// success, and automatically return a `Box<dyn Error>` on failure.
let mut file = File::open(path)?;
// We aren't concerned about the return value for this function,
// however we still need to handle the error with question mark.
file.read_to_string(&mut buffer)?;
// remove any whitespace
let buffer = buffer.trim();
// We wrap this function call in an `Ok` because `?` will
// automatically unwrap an `Ok` variant, but our function
// signature requires a `Result`.
Ok(u8::from_str_radix(buffer, 10)?)
}
// Same function as above, but without using question mark.
// This function also demonstrates different error handling strategies.
fn read_num_no_questionmark(path: &Path) -> Result<u8, Box<dyn Error>> {
// make a buffer
let mut buffer = String::new();
// possible error when opening file (type annotation shown for clarity)
let file: Result<File, io::Error> = File::open(path);
// match on `file` to see what happened
match file {
// when open was successful ...
Ok(mut file) => {
// ... read data into a buffer ...
if let Err(e) = file.read_to_string(&mut buffer) {
// ... if that fails, return a boxed Err
return Err(Box::new(e));
}
}
// failed to open file, return `dyn Error` using `.into()`
Err(e) => return Err(e.into()),
}
// remove any whitespace (yay no failure point!)
let buffer = buffer.trim();
// convert to u8 while manually mapping a possible conversion error
u8::from_str_radix(buffer, 10).map_err(|e| e.into())
}
// calling the function is the same regardless of technique chosen
let num: Result<u8, _> = read_num_using_questionmark(Path::new("num.txt"));
if num.is_ok() { // `.is_ok` will tell us if we have an Ok variant
println!("number was successfully read");
}
// use some combinators on the result
let num = num // take `num`
.map(|n| n + 1) // map an `Ok` variant by adding 1 to the value
.ok() // transform to an `Option`
.and_then(|n| // and then ...
n.checked_mul(2) // double the inner value (this returns an Option)
)
.ok_or_else(|| // transform back into `Result` ...
// ... using this error message if the multiplication failed
format!("doubling exceeds size of u8")
);
// use `match` to print out the result on an appropriate output stream
match num {
Ok(n) => println!("{n}"),
Err(e) => eprintln!("{e}"),
}
The From
trait can also be utilized with errors and the question mark operator:
// a target error type
enum JobError {
Expired,
Missing,
Other(u8),
}
// similar implementation from previous example
impl From<u8> for JobError {
fn from(code: u8) -> Self {
match code {
1 => Self::Expired,
2 => Self::Missing,
c => Self::Other(c),
}
}
}
// arbitrary structure
struct Job;
impl Job {
// function that returns an error code as u8
fn whoops(&self) -> Result<(), u8> {
Err(2)
}
}
// function potentially returns a JobError
fn execute_job(job: Job) -> Result<(), JobError> {
// use question mark to convert potential errors into a JobError
Ok(job.whoops()?)
}
let status = execute_job(Job); // JobError::Missing
The Iterator
trait provides a large amount of functionality for iterating over collections using combinators.
// create a new vector ...
let nums = vec![1, 2, 3, 4, 5];
// ... then turn it into an iterator and multiply each element by 3 ...
let tripled = nums.iter().map(|n| n * 3);
// ... then filter out all the even numbers ...
let odds_only = tripled.filter(|n| n % 2 == 1);
// ... and finally collect the odd numbers into a new Vector
let new_vec: Vec<i32> = odds_only.collect(); // type annotation required
// same steps as above, but chaining it all together:
// create a new Vector
let nums = vec![1, 2, 3, 4, 5];
let tripled_odds_only = nums // take the `nums` vector
.iter() // then turn it into an iterator
.filter_map(|n| { // then perform a filter and map operation on each element
let n = n * 3; // multiply the element by 3
if n % 2 == 1 {
Some(n) // keep if odd
} else {
None // discard if even
}
})
.collect::<Vec<i32>>(); // collect the remaining numbers into a Vector
// This example takes a vector of (x,y) points where all even indexes
// are the x-coordinates, and all odd indexes are y-coordinates and
// creates an iterator over tuples of the points.
// Points Vector: x, y, x, y, x, y, x, y, x, y
let points = vec![0, 0, 2, 1, 4, 3, 6, 5, 8, 7];
// `step_by` will skip every other index; iteration starts at index 0
let x = points.iter().step_by(2);
// use `skip` to skip 1 element so we start at index 1
// then skip every other index starting from index 1
let y = points.iter().skip(1).step_by(2);
// `zip` takes two iterators and generates a new one by taking
// alternating elements from each iterator. `enumerate` provides
// the iteration count as an index
let points = x.zip(y).enumerate();
for (i, point) in points {
println!("{i}: {point:?}");
// 0: (0, 0)
// 1: (2, 1)
// 2: (4, 3)
// 3: (6, 5)
// 4: (8, 7)
}
// create a new Vector
let nums = vec![1, 2, 3];
let sum = nums // take `nums`
.iter() // create an iterator
.sum::<i32>(); // add all elements together and return an i32
assert_eq!(sum, 6);
All data in Rust is owned by some data structure or some function and the data can be borrowed by other functions or other data structures. This system enables compile-time tracking of how long data lives which in turn enables compile-time memory management without runtime overhead.
// borrow a str
fn print(msg: &str) {
println!("{msg}");
}
// borrow a str, return a slice of the borrowed str
fn trim(msg: &str) -> &str {
msg.trim()
}
// borrow a str, return an owned String
fn all_caps(msg: &str) -> String {
msg.to_ascii_uppercase()
}
// function takes ownership of `msg` and is responsible
// for destroying it
fn move_me(msg: String) {
println!("{msg}");
// `msg` destroyed
}
// borrow "foo"
print("foo");
// borrow " bar "; return a new slice
let trimmed: &str = trim(" bar "); // "bar"
// borrow "baz"; return a new String
let cruise_control: String = all_caps("baz"); // "BAZ"
// create owned String
let foo: String = String::from("foo");
// Move the String (foo) into move_me function.
// The `move_me` function will destroy `foo` since
// ownership was transferred.
let moved = move_me(foo);
// `foo` no longer exists
// println!("{foo}");
// ERROR: `foo` was moved into `move_me`
Lifetimes allow specifying to the compiler that some data already exists. This allows creation of structures containing borrowed data or to return borrowed data from a function.
// Use lifetimes to indicate borrowed data stored in structures.
// Both structures and enumerations can have multiple lifetimes.
struct Email<'a, 'b> {
subject: &'a str,
body: &'b str,
}
let sample_subject = String::from("cheat sheet");
let sample_body = String::from("lots of code");
// `sample_subject` and `sample_body` are required to stay in memory
// as long as `email` exists.
let email = Email {
subject: &sample_subject,
body: &sample_body,
};
// dbg!(sample_subject);
// dbg!(email);
// ERROR: cannot move `sample_subject` into dbg macro because
// `email` still needs it
// Lifetime 'a indicates borrowed data stored in the enum.
// The compiler uses 'a to enforce the following:
// 1. &str data must exist prior to creating a `StrCompare`
// 2. &str data must still exist after destruction of `StrCompare`
#[derive(Debug)]
enum StrCompare<'a> {
Equal,
Longest(&'a str),
}
// determine which &str is longer
// Lifetime annotations indicate that both `a` and `b` are
// borrowed and they will both exist for the same amount of time.
fn longest<'s>(a: &'s str, b: &'s str) -> StrCompare<'s> {
if a.len() > b.len() {
StrCompare::Longest(a)
} else if a.len() < b.len() {
StrCompare::Longest(b)
} else {
StrCompare::Equal
}
}
// ERROR: the following block will not compile (see comments)
// new scope: lifetime (1)
{
let a = String::from("abc"); // lifetime (1)
let longstring: StrCompare; // lifetime (1)
// new scope: lifetime (2)
{
let b = String::from("1234"); // lifetime (2)
longstring = longest(&a, &b);
// end scope; lifetime (2) data dropped (destroyed):
// `b` no longer exists
}
// `b` was previously dropped, but might still be needed here
// as part of the `StrCompare` enumeration
println!("{longstring:?}"); // ERROR: `b` doesn't live long enough
// lifetime (1) data dropped in reverse creation order:
// `longstring` no longer exists
// `a` no longer exists
}
// FIXED: `a` and `b` now have same lifetime
// new scope: lifetime (1)
{
let a = String::from("abc"); // lifetime (1)
let b = String::from("1234"); // lifetime (1)
let longstring = longest(&a, &b); // lifetime (1)
println!("{longstring:?}");
// lifetime (1) data dropped in reverse creation order:
// `longstring` dropped
// `b` dropped
// `a` dropped
}
Traits declare behavior that may be implemented by any structures or enumerations. Traits are similar to interfaces in other programming languages.
// create a new trait
trait Notify {
// implementers must define this function
fn notify(&self) -> &str;
}
struct Phone {
txt: String,
}
struct Email {
subject: String,
body: String,
}
// implement the `Notify` trait for the `Phone` struct
impl Notify for Phone {
fn notify(&self) -> &str {
&self.txt
}
}
// implement the `Notify` trait for the `Email` struct
impl Notify for Email {
fn notify(&self) -> &str {
&self.subject
}
}
// create a new Phone
let phone = Phone {
txt: String::from("foo"),
};
// create a new Email
let email = Email {
subject: String::from("my email"),
body: String::from("bar"),
};
phone.notify(); // "foo"
email.notify(); // "bar"
Associated types allow trait implementers to easily set a specific type for use in a trait.
trait Compute {
// associated type to be defined by an implementer
type Target;
// use Self::Target to refer to the associated type
fn compute(&self, rhs: Self::Target) -> Self::Target;
}
struct Add(i32);
struct Sub(f32);
impl Compute for Add {
// set the associated type to i32
type Target = i32;
fn compute(&self, rhs: Self::Target) -> Self::Target {
self.0 + rhs
}
}
impl Compute for Sub {
// set the associated type to f32
type Target = f32;
fn compute(&self, rhs: Self::Target) -> Self::Target {
self.0 - rhs
}
}
let add = Add(1);
let two = add.compute(1);
let sub = Sub(1.0);
let zero = sub.compute(1.0);
Trait objects can be used to insert multiple objects of different types into a single collection. They are also useful when boxing closures or working with unsized types.
// create a trait to refill some resource
trait Refill {
fn refill(&mut self);
}
// some structures to work with
struct Player { health_points: i32 }
struct MagicWand { magic_points: i32 }
struct Vehicle { fuel_remaining: i32 }
// set the maximum values for the structures
impl Player { const MAX_HEALTH: i32 = 100; }
impl MagicWand { const MAX_MAGIC: i32 = 100; }
impl Vehicle { const MAX_FUEL: i32 = 300; }
// trait implementations for all 3 structures
impl Refill for Player {
fn refill(&mut self) {
self.health_points = Self::MAX_HEALTH;
}
}
impl Refill for MagicWand {
fn refill(&mut self) {
self.magic_points = Self::MAX_MAGIC;
}
}
impl Refill for Vehicle {
fn refill(&mut self) {
self.fuel_remaining = Self::MAX_FUEL;
}
}
// instantiate some structures
let player = Player { health_points: 50 };
let wand = MagicWand { magic_points: 30 };
let vehicle = Vehicle { fuel_remaining: 0 };
// let objects = vec![player, wand, vehicle];
// ERROR: cannot have a Vector containing different types
// Type annotation is required here. `dyn` keyword indicates
// "dynamic dispatch" and is also required for trait objects.
let mut objects: Vec<Box<dyn Refill>> =
vec![
Box::new(player), // must be boxed
Box::new(wand),
Box::new(vehicle)
];
// iterate over the collection and refill all of the resources
for obj in objects.iter_mut() {
obj.refill();
}
The Default
trait allows a default version of a structure to be easily created.
struct Foo {
a: usize,
b: usize,
}
// Default is available without `use`
impl Default for Foo {
fn default() -> Self {
Self { a: 0, b: 0 }
}
}
// make a new Foo
let foo = Foo::default();
// make a new Foo with specific values set
// and use default values for the rest
let foo = Foo {
a: 10,
..Default::default() // b: 0
};
// we might have a Foo ...
let maybe_foo: Option<Foo> = None;
// ... if not, use the default one
let definitely_foo = maybe_foo.unwrap_or_default();
From
and Into
traits allow non-fallible conversion between different types. If the conversion can fail, the TryFrom
and TryInto
traits will perform fallible conversions. Always prefer implementing From
because it will automatically give you an implementation of Into
.
Click for more details on From
Click for more details on TryFrom
// this will be our target type
enum Status {
Broken(u8),
Working,
}
// we want to convert from a `u8` into a `Status`
impl From<u8> for Status {
// function parameter must be the starting type
fn from(code: u8) -> Self {
match code {
// pick a variant based on the code
0 => Status::Working,
c => Status::Broken(code),
}
}
}
// use `.into()` to convert the `u8` into a Status
let status: Status = 0.into(); // Status::Working
// use `Status::from()` to convert from a `u8` into a Status
let status = Status::from(1); // Status::Broken(1)
Rust data structures and functions only operate on a single data type. Generics provide a way to automatically generate duplicated functions and data structures appropriate for the data types in use.
// Here we define a structure generic over type T.
// T has no trait bounds, so any type can be used here.
struct MyVec<T> {
inner: Vec<T>, // Vector of type T
}
// define a structure generic over type T where
// type T implements the Debug trait
struct MyVec<T: std::fmt::Debug> {
inner: Vec<T>,
}
// define a structure generic over type T where
// type T implements both the Debug and Display traits
struct MyVec<T>
where
T: std::fmt::Debug + std::fmt::Display,
{
inner: Vec<T>,
}
// create a new MyVec having type `usize`
let nums: MyVec<usize> = MyVec { inner: vec![1, 2, 3] };
// create a new MyVec with type inference
let nums = MyVec { inner: vec![1, 2, 3] };
// let nums = MyVec { inner: vec![] };
// ERROR: type annotations required because no inner data type provided
let nums: MyVec<String> = MyVec { inner: vec![] };
// OK using type annotations
// use the `Add` trait
use std::ops::Add;
// pub trait Add<Rhs = Self> {
// type Output;
// fn add(self, rhs: Rhs) -> Self::Output;
// }
// Here we define a function that is generic over type T.
// Type T has the following properties:
// - Must implement the `Add` trait
// - The associated type `Output` must
// be the same type T
fn sum<T: Add<Output = T>>(lhs: T, rhs: T) -> T {
lhs + rhs
}
let two = sum(1, 1); // call the function
let two = sum::<f64>(1.0, 1.0); // fully-qualified syntax
// let four_ish = sum(2, 2.0);
// ERROR: 2 is an integer and 2.0 is a floating point number,
// but the generic function requires both types be the same
Rust enables developers to overload existing operators. The operators are defined as traits in the link below.
Click for more details, and a list of all operators
// the `Add` trait is used for the `+` operator
use std::ops::Add;
struct Centimeters(f64);
// implement Add for Centimeters + Centimeters
impl Add<Self> for Centimeters {
// Self (capital S) refers to the type specified
// in the `impl` block (Centimeters)
type Output = Self;
// self (lowercase S) refers to an instance of Centimeters.
// Using `Self` makes it easier to change the types
// later if needed.
fn add(self, rhs: Self) -> Self::Output {
Self(self.0 + rhs.0)
}
// equivalent to the above
fn add(self, rhs: Centimeters) -> Centimeters {
Centimeters(self.0 + rhs.0)
}
}
fn add_distance(a: Centimeters, b: Centimeters) -> Centimeters {
// When `+` is used, it calls the `add` function
// defined as part of the `Add` trait. Since we already
// access the inner value using .0 in the trait, we can
// just do a + b here.
a + b
}
let length = Centimeters(20.0);
let distance = add_distance(length, Centimeters(10.0));
The Index
trait is used for indexing operations. Implementing this trait on a structure permits accessing it's fields using indexing.
// the `Index` trait is used for indexing operations `[]`
use std::ops::Index;
// this will be our index
enum Temp {
Current,
Max,
Min,
}
// sample structure to be indexed into
struct Hvac {
current_temp: f64,
max_temp: f64,
min_temp: f64,
}
// implement Index where the index is Temp and the structure is Hvac
impl Index<Temp> for Hvac {
// output type matches the data we will return from the structure
type Output = f64;
// `index` function parameter must be the type to be
// used as an index
fn index(&self, temp: Temp) -> &Self::Output {
use Temp::*; // use the variants for shorter code
match temp {
// now just access the structure fields
// based on provided variant
Current => &self.current_temp,
Max => &self.max_temp,
Min => &self.min_temp,
}
}
}
// create a new Hvac
let env = Hvac {
current_temp: 30.0,
max_temp: 60.0,
min_temp: 0.0,
};
// get the current temperature using an Index
let current = env[Temp::Current];
// get the max temperature using an Index
let max = env[Temp::Max];
Rust provides multiple techniques to approach concurrent programming. Computation-heavy workloads can use OS threads while idle workloads can use asynchronous programming. Concurrent-aware types and data structures allow wrapping existing structures which enables them to be utilized in a concurrent context.
Rust provides the ability to create OS threads via the std::thread
module. Any number of threads can be created, however performance will be optimal when using the same number of thread as there are processing cores in the system.
use std::thread::{self, JoinHandle};
// The thread::spawn function will create a new thread and return
// a `JoinHandle` type that can be used to wait for this thread
// to finish working.
let thread_1 = thread::spawn(|| {});
// JoinHandle is generic over the return type from the thread
let thread_2: JoinHandle<usize> = thread::spawn(|| 1);
// wait for both threads to finish work
thread_1.join();
thread_2.join();
Channels provide a way to communicate between two points and are used for transferring data between threads. They have two ends: a sender and a receiver. The sender is used to send/write data into the channel, and the receiver is used to receive/read data out of the channel.
// The crossbeam_channel crate provides better performance
// and ergonomics compared to the standard library.
use crossbeam_channel::unbounded;
// create a channel with unlimited capacity
let (sender, receiver) = unbounded();
// data can be "sent" on the `sender` end
// and "received" on the `receiver` end
sender.send("Hello, channel!").unwrap();
// use `.recv` to read a message
match receiver.recv() {
Ok(msg) => println!("{msg}"),
Err(e) => println!("{e}"),
}
Using channels with threads:
// The crossbeam_channel crate provides better performance
// and ergonomics compared to the standard library.
use crossbeam_channel::unbounded;
use std::thread;
// create a channel with unlimited capacity
let (sender, receiver) = unbounded();
// clone the receiving ends so they can be sent to different threads
let (r1, r2) = (receiver.clone(), receiver.clone());
// move `r1` into this thread with the `move` keyword
let thread_1 = thread::spawn(move || match r1.recv() {
Ok(msg) => println!("thread 1 msg: {msg}"),
Err(e) => eprintln!("thread 1 error: {e}"),
});
// move `r2` into this thread with the `move` keyword
let thread_2 = thread::spawn(move || match r2.recv() {
Ok(msg) => println!("thread 2 msg: {msg}"),
Err(e) => eprintln!("thread 2 error: {e}"),
});
// send 2 messages into the channel
sender.send("Hello 1").unwrap();
sender.send("Hello 2").unwrap();
// wait for the threads to finish
thread_1.join();
thread_2.join();
Mutex (short for mutually exclusive) allows data to be shared across multiple threads by using a locking mechanism. When a thread locks the Mutex, it will have exclusive access to the underlying data. Once processing is completed, the Mutex is unlocked and other threads will be able to access it.
// The parking_lot crate provides better performance
// and ergonomics compared to the standard library.
use parking_lot::Mutex;
// `Arc` is short for Atomic reference-counted pointer
// (thread safe pointer)
use std::sync::Arc;
use std::thread;
// data we will share between threads
struct Counter(usize);
// make a new Counter starting from 0
let counter = Counter(0);
// wrap the counter in a Mutex and wrap the Mutex in an Arc
let shared_counter = Arc::new(Mutex::new(counter));
// make some copies of the pointer:
// recommended syntax - clear to see that we are cloning a pointer (Arc)
let thread_1_counter = Arc::clone(&shared_counter);
// ok too, but not as clear as above; shared_counter could be anything
let thread_2_counter = shared_counter.clone();
// spawn a thread
let thread_1 = thread::spawn(move || {
// lock the counter so we can access it
let mut counter = thread_1_counter.lock();
counter.0 += 1;
// lock is automatically unlocked when dropped
});
let thread_2 = thread::spawn(move || {
// new scopes can be introduced to drop the lock ...
{
let mut counter = thread_2_counter.lock();
counter.0 += 1;
// ... lock automatically unlocked
}
let mut counter = thread_2_counter.lock();
counter.0 += 1;
// we can also call `drop()` directly to unlock
drop(counter);
});
// wait for threads to finish
thread_1.join();
thread_2.join();
// counter is now at 3
assert_eq!(shared_counter.lock().0, 3);
Rust's asynchronous programming consists of two parts:
future
which represents an asynchronous operation that should be ranexecutor
(or runtime
) which is responsible for managing and running futures
(as tasks
)There are async
versions of many existing structures:
// Use the `futures` crate and `FutureExt` when working with async.
// `FutureExt` provides combinators similar to `Option` and `Result`
use futures::future::{self, FutureExt};
// asynchronous functions start with the `async` keyword
async fn add_one(n: usize) -> usize {
n + 1
}
// the `tokio` crate provides a commonly used executor
#[tokio::main]
async fn main() {
// async functions are lazy--no computation happens yet
let one = async { 1 }; // inline future
let two = one.map(|n| n + 1); // add 1 to the future
let three = async { 3 }; // inline future
let four = three.then(add_one); // run async function on future
// `join` will wait on both futures to complete.
// `.await` begins execution of the futures.
let result = future::join(two, four).await;
assert_eq!(result, (2, 4))
}
Streams provide Iterator
-like functionality to asynchronous streams of values.
// Use the `futures` crate when working with async.
use futures::future;
// `StreamExt` provides combinators similar to `Iterator`
use futures::stream::{self, StreamExt};
// the `tokio` crate provides a commonly used executor
#[tokio::main]
async fn main() {
let nums = vec![1, 2, 3, 4];
// create a stream from the Vector
let num_stream = stream::iter(nums);
let new_nums = num_stream // take num_stream
.map(|n| n * 3) // multiply each value by 3
.filter(|n| // filter ...
future::ready(n % 2 == 0) // ... only take even numbers
)
.then(|n| async move { n + 1 }) // run async function on each value
.collect::<Vec<_>>().await; // collect into a Vector
assert_eq!(new_nums, vec![7, 13]);
stream::iter(vec![1, 2, 3, 4])
.for_each_concurrent( // perform some action concurrently
2, // maximum number of in-flight tasks
|n| async move { // action to take
// some potentially
// async code here
}
).await; // run on the executor
}
Code in Rust is organized into modules. Modules can be created inline with code, or using the filesystem where each file is a module or each directory is a module (containing more files).
Modules are accessed as paths starting either from the root or from the current module. This applies to both inline modules and modules as separate files.
// private module: only accessible within the same scope (file / module)
mod sample {
// bring an inner module to this scope
pub use public_fn as inner_public_fn; // rename to inner_public_fn
// default: private
fn private_fn() {}
// public to parent module
pub fn public_fn() {}
// public interface to private_fn
pub fn public_interface() {
private_fn(); // sample::private_fn
inner::limited_super();
inner::limited_module();
}
// public module: accessible via `sample`
pub mod inner {
fn private_fn() {}
pub fn public_fn() {}
pub fn public_interface() {
private_fn(); // inner::private_fn
super::hidden::public_fn(); // `inner` and `hidden` are in
// the same scope, so this is Ok.
}
// public only to the immediate parent module
pub(super) fn limited_super() {}
// public only to the specified ancestor module
pub(in crate::sample) fn limited_module() {}
// public to the entire crate
pub(crate) fn limited_crate() {}
}
// private module: can only be accessed by `sample`
mod hidden {
fn private_fn() {}
pub fn public_fn() {}
pub fn public_interface() {
private_fn() // hidden::private_fn
}
// It's not possible to access module `sample::hidden` from outside of
// `sample`, so `fn limited_crate` is public only to the `sample`
// module.
pub(crate) fn limited_crate() {}
}
}
fn main() {
// functions can be accessed by their path
sample::public_fn();
sample::public_interface();
sample::inner_public_fn(); // sample::inner::public_fn
// ERROR: private_fn() is private
// sample::private_fn();
// nested modules can be accessed by their path
sample::inner::public_fn();
sample::inner::public_interface();
sample::inner::limited_crate();
// ERROR: private_fn() is private
// sample::inner::private_fn();
// ERROR: limited_super() is only public within `sample`
// sample::inner::limited_super();
// ERROR: limited_module() is only public within `sample`
// sample::inner::limited_module();
// ERROR: `hidden` module is private
// sample::hidden::private_fn();
// ERROR: `hidden` module is private
// sample::hidden::public_fn();
// ERROR: `hidden` module is private
// sample::hidden::public_interface();
// `use` brings specific items into scope
{
// a single function
use sample::public_fn;
public_fn();
// begin path from crate root
use crate::sample::public_interface;
public_interface();
// rename an item
use sample::inner::public_fn as other_public_fn;
other_public_fn();
}
{
// multiple items from a single module
use sample::{public_fn, public_interface};
public_fn();
public_interface();
}
{
// `self` in this context refers to the `inner` module
use sample::inner::{self, public_fn};
public_fn();
inner::public_interface();
}
{
// bring everything from `sample` into this scope
use sample::*;
public_fn();
public_interface();
inner::public_fn();
inner::public_interface();
}
{
// paths can be combined
use sample::{
public_fn,
inner::public_fn as other_public_fn
};
public_fn(); // sample::public_fn
other_public_fn() // inner::public_fn
}
}
Cargo.toml
[lib]
name = "sample"
path = "lib/sample.rs"
Module directory structure
.
|-- lib
|-- sample.rs
|-- file.rs
|-- dir/
|-- mod.rs
|-- public.rs
|-- hidden.rs
./lib/sample.rs: this is the path indicated by path
in Cargo.toml
// a module in a single file named `file.rs`
pub mod file;
// a module in a directory named `dir`
pub mod dir;
// functions / enums / structs / etc can be defined here also
pub fn foo() {}
./lib/file.rs
pub fn foo() {}
A file named mod.rs
is required when creating a module from a directory. This file specifies item visibility and specifies additional modules.
./lib/dir/mod.rs:
// a module in a single file named `hidden.rs`
mod hidden;
// a module in a single file named `public.rs`
pub mod public;
pub fn foo() {}
./lib/dir/hidden.rs
pub fn foo() {}
./lib/dir/public.rs
pub fn foo() {}
./src/main.rs
fn main() {
sample::file::foo();
sample::dir::public::foo();
sample::dir::foo();
// ERROR: `hidden` module not marked as `pub`
// sample::dir::hidden::foo();
}
Rust supports testing both private and public functions and will also test examples present in documentation.
Using a dedicated test
module within each file for testing is common:
use std::borrow::Cow;
// a function to test
fn capitalize_first_letter<'a>(input: &'a str) -> Cow<'a, str> {
use unicode_segmentation::UnicodeSegmentation;
// do nothing if the string is empty
if input.is_empty() {
Cow::Borrowed(input)
} else {
let graphemes = input.graphemes(true).collect::<Vec<&str>>();
if graphemes.len() >= 1 {
let first = graphemes[0];
let capitalized = first.to_uppercase();
let remainder = graphemes[1..]
.iter()
.map(|s| s.to_owned())
.collect::<String>();
Cow::Owned(format!("{capitalized}{remainder}"))
} else {
Cow::Borrowed(input)
}
}
}
// another function to test
fn is_local_phone_number(num: &str) -> bool {
use regex::Regex;
let re = Regex::new(r"[0-9]{3}-[0-9]{4}").unwrap();
re.is_match(num)
}
// Use the `test` configuration option to only compile the `test` module
// when running `cargo test`.
#[cfg(test)]
mod test {
// scoping rules require us to use whichever functions we are testing
use super::{is_local_phone_number, capitalize_first_letter};
// use the #[test] annotation to mark the function as a test
#[test]
fn accepts_valid_numbers() {
// assert! will check if the value is true, and panic otherwise.
// Test failure is marked by a panic in the test function.
assert!(is_local_phone_number("123-4567"));
}
#[test]
fn rejects_invalid_numbers() {
// we can use multiple assert! invocations
assert!(!is_local_phone_number("123-567"));
assert!(!is_local_phone_number("12-4567"));
assert!(!is_local_phone_number("-567"));
assert!(!is_local_phone_number("-"));
assert!(!is_local_phone_number("1234567"));
assert!(!is_local_phone_number("one-four"));
}
#[test]
fn rejects_invalid_numbers_alternate() {
// We can also put the test data into a Vector
// and perform the assert! in a loop.
let invalid_numbers = vec![
"123-567",
"12-4567",
"-567",
"-",
"1234567",
"one-four",
];
for num in invalid_numbers.iter() {
assert!(!is_local_phone_number(num));
}
}
#[test]
fn capitalizes_first_letter_with_multiple_letter_input() {
let result = capitalize_first_letter("test");
// assert_eq! will check if the left value is
// equal to the right value
assert_eq!(result, String::from("Test"));
}
#[test]
fn capitalizes_first_letter_with_one_letter_input() {
let result = capitalize_first_letter("t");
assert_eq!(result, String::from("T"));
}
#[test]
fn capitalize_only_letters() {
let data = vec![
("3test", "3test"),
(".test", ".test"),
("-test", "-test"),
(" test", " test"),
];
for (input, expected) in data.iter() {
let result = capitalize_first_letter(input);
assert_eq!(result, *expected);
}
}
}
Rust tests example code present in documentation. This happens automatically when running cargo test
, but will only operate on library projects.
use std::borrow::Cow;
/// Capitalizes the first letter of the input `&str`.
///
/// Only capitalizes the first letter when it appears as the first character
/// of the input. If the first letter of the input `&str` is not a letter
/// that can be capitalized (such as a number or symbol), then no change will occur.
///
/// # Examples
///
/// All code examples here will be tested. Lines within the code
/// fence that begin with a hash (#) will be hidden in the docs.
///
/// ```
/// # use crate_name::capitalize_first_letter;
/// let hello = capitalize_first_letter("hello");
/// assert_eq!(hello, "Hello");
/// ```
fn capitalize_first_letter<'a>(input: &'a str) -> Cow<'a, str> {
use unicode_segmentation::UnicodeSegmentation;
// do nothing if the string is empty
if input.is_empty() {
Cow::Borrowed(input)
} else {
let graphemes = input.graphemes(true).collect::<Vec<&str>>();
if graphemes.len() >= 1 {
let first = graphemes[0];
let capitalized = first.to_uppercase();
let remainder = graphemes[1..].iter().map(|s| s.to_owned()).collect::<String>();
Cow::Owned(format!("{capitalized}{remainder}"))
} else {
Cow::Borrowed(input)
}
}
}
The standard library provides convenient macros for performing various tasks. A subset is listed below.
Macro | Description |
---|---|
assert | Checks if a boolean is true at runtime and panics if false . |
assert_eq | Checks if two expressions are equal at runtime and panics if not. |
dbg | Prints debugging information for the given expression. |
env | Inserts data from an environment variable at compile time. |
println | Format and print information (with a newline) to the terminal on stdout . |
eprintln | Format and print information (with a newline) to the terminal on stderr . |
print | Format and print information (with no newline) to the terminal on stdout . |
eprint | Format and print information (with no newline) to the terminal on stderr . |
format | Format information and return a new String . |
include_str | Include data from a file as a 'static str at compile time. |
include_bytes | Include data from a file as a byte array at compile time. |
panic | Triggers a panic on the current thread. |
todo | Indicates unfinished code; will panic if executed. Will type-check properly during compilation. |
unimplemented | Indicates code that is not implemented and with no immediate plans to implement; will panic if executed. Will type-check properly during compilation. |
unreachable | Indicates code that should never be executed. Use when compiler is unable to make this determination. Will type-check properly during compilation. |
vec | Create a new Vector . |
Derive
macros allow functionality to be implemented on structures or enumerations with a single line of code.
Macro | Description |
---|---|
Clone | Explicit copy using .clone() |
Copy | Type will be implicitly copied by compiler when needed. Requires Clone to be implemented. |
Debug | Enable formatting using {:?} |
Default | Implements Default trait |
Hash | Enables usage with a Hasher (ie: keys in a HashMap ). Requires PartialEq and Eq to be implemented. |
Eq | Symmetric equality (a == b and b == a ) and transitive equality (if a == b and b == c then a == c ). Requires PartialEq to be implemented. |
PartialEq | Allows comparison with == |
Ord | Transitive ordering (if a < b and b < c then a < c ). Requires Eq to be implemented. |
PartialOrd | Allow comparison with < , <= , > , >= . Requires PartialEq to be implemented. |
// enable `Foo` to be Debug-printed and
// implicitly copied if needed
#[derive(Debug, Clone, Copy)]
struct Foo(usize);
fn hi(f: Foo) {}
let foo = Foo(1);
hi(foo); // moved
hi(foo); // implicit copy
hi(foo); // implicit copy
hi(foo); // implicit copy
// enable `Name` to be used as a key in a HashMap
#[derive(Eq, PartialEq, Hash)]
struct Name(String);
let name = Name("cheat sheet".into());
let mut names = std::collections::HashMap::new();
names.insert(name, ());
// enable `Letters` to be used with comparison operators
#[derive(PartialEq, PartialOrd)]
enum Letters {
A,
B,
C,
}
if Letters::A < Letters::B { /* ... */ }
Declarative macros operate on code instead of data and are commonly used to write implementation blocks and tests.
// use `macro_rules!` to create a macro
macro_rules! name_of_macro_here {
// Macros consist of one or more "matchers", each having a "transcriber".
// This is similar to having multiple arms in a `match` expression.
// Matchers are evaluated from top to bottom.
() => {};
(
// Matchers have metavariables and fragment specifiers
// which are detailed in the following sections.
) => {
// Transcribers represent the code that will be
// generated by the macro. Metavariables can be
// used here for generating code.
};
(2) => {};
(3) => {};
}
name_of_macro_here!(); // first matcher will match
name_of_macro_here!(1); // second matcher will match
name_of_macro_here!(2); // third matcher will match
name_of_macro_here!(3); // fourth matcher will match
Declarative macros can be used in some (but not all!) positions in Rust code.
Expression
Right-hand side of expressions or statements.
let nums = vec![1, 2, 3];
match vec![1, 2, 3].as_slice() {
_ => format!("hello"),
}
Statement
Usually ends with a semicolon.
println!("Hello!");
dbg!(9_i64.pow(2));
Pattern
Match arms or if let
patterns.
if let pat!(x) = Some(1) { }
match Some(1) {
pat!(x) => (),
_ => ()
}
Type
Anywhere you can use a type annotation.
macro_rules! Tuple {
{ $A:ty, $B:ty } => { ($A, $B) };
}
type N2 = Tuple!(i32, i32);
let nums: Tuple(i32, char) = (1, 'a');
Item
Anywhere you can declare a constant, impl
block, enum, module, etc.
macro_rules! constant {
($name:ident) => { const $name: &'static str = "Cheat sheet"; }
}
macro_rules! newtype {
($name:ident, $typ:ty) => { struct $name($typ); }
}
constant!(NAME);
assert_eq!(NAME, "Cheat sheet");
newtype!(DemoStruct, usize);
let demo = DemoStruct(5);
Associated Item
Like an Item
, but specifically within an impl
block or trait
.
macro_rules! msg {
($msg:literal) => {
pub fn msg() {
println!("{}", $msg);
}
};
}
struct Demo;
// Associated item
impl Demo {
msg!("demos struct");
}
macro_rules Transcribers
Declarative macros can be present within other declarative macros.
macro_rules! demo {
() => {
println!("{}",
format!("demo{}", '!')
);
};
}
demo!()
Declarative macros operate on metavariables
. Just like a function parameter, metavariables require a name and a type. Here is a list metavariable types that can be used for declarative macros, and code examples of that type.
$item
macro_rules! demo {
($i:item) => { $i };
}
demo!(const a: char = 'g';);
demo! {fn hello(){}}
demo! {mod demo{}}
struct MyNum(i32);
demo! {
impl MyNum {
pub fn demo(&self) {
println!("my num is {}", self.0);
}
}
}
$block
macro_rules! demo {
($b:block) => { $b };
}
let num = demo!(
{
if 1 == 1 { 1 } else { 2 }
}
);
$stmt
macro_rules! demo {
($s:stmt) => { $s };
}
demo!( let a = 5 );
let mut myvec = vec![];
demo!( mybec.push(a) );
$pat
/ $pat_param
macro_rules! demo {
($p:pat) => {{
let num = 3;
match num {
$p => (),
1 => (),
_ => (),
}
}};
}
demo! ( 2 );
$expr
macro_rules! demo {
($e:expr) => { $e };
}
demo!( loop {} );
demo!( 2 + 2 );
demo!( {
panic!();
} );
$ty
macro_rules! demo {
($t:ty) => {{
let d: $t = 4;
fn add(lhs: $t, rhs: $t) -> $t {
lhs + rhs
}
}};
}
demo!(i32);
demo!(usize);
$ident
macro_rules! demo {
($i:ident, $i2:ident) => {
fn $i() {
println!("hello");
}
let $i2 = 5;
};
}
demo!(say_hi, five);
say_hi();
assert_eq!(5, five);
$path
macro_rules! demo {
($p:path) => {
use $p;
};
}
demo!(std::collections::HashMap);
$tt
macro_rules! demo {
($t:tt) => {
$t {}
};
}
demo!(loop);
demo!({
println!("hello");
});
$meta
macro_rules! demo {
($m:meta) => {
$[derive($m)]
struct MyNum(i32);
};
}
demo!(Debug);
$lifetime
macro_rules! demo {
($l:lifetime) => {
let a: &$l str = "sample";
};
}
demo!('static);
$vis
macro_rules! demo {
($v:vis) => {
$v fn sample() {}
};
}
demo!(pub);
$literal
macro_rules! demo {
$(l:literal) => { $l };
}
let five = demo!(5);
let hi = demo!("hello");
One of the primary use cases for macros is automatically writing code for multiple inputs. Repetitions are used to accomplish this.
macro_rules! demo {
// zero or more
(
// comma (,) is a separator between each `frag`
$( $metavar:frag ),*
) => {
// using a repetition requires the same repetition symbol
// as specified in the matcher above
$( $metavar )*
}
// one or more
(
// comma (,) is a separator between each `frag`
$( $metavar:frag ),+
) => {
// using a repetition requires the same repetition symbol
// as specified in the matcher above
$( $metavar )+
}
// zero or one
(
// no separator possible because only 0 or 1 `frag` may be present
$( $metavar:frag )?
) => {
// using a repetition requires the same repetition symbol
// as specified in the matcher above
$( $metavar )?
}
}
macro_rules! demo {
(
// zero or one literals
$( $a:literal )?
) => {
$($a)?
}
}
demo!();
demo!(1);
macro_rules! demo {
(
// one or more literals separated by a comma
$( $a:literal ),+
) => {
$(
println!("{}", $a);
)+
}
}
demo!(1);
demo!(1, 2, 3, 4);
macro_rules! demo {
(
// any number of literals separated by a comma
$( $a:literal ),*
) => {
$(
println!("{}", $a);
)*
}
}
demo!();
demo!(1);
demo!(1, 2, 3, 4);
macro_rules! demo {
(
// any number of literals separated by a comma
// and may have a trailing comma at the end
$( $a:literal ),*
$(,)?
) => {
$(
println!("{}", $a);
)*
}
}
demo!();
demo!(1);
demo!(1, 2, 3, 4,);
Here is an example of a macro to write multiple tests:
macro_rules! test_many {
(
// name of a function followed by a colon
$fn:ident:
// "a literal followed by -> followed by a literal"
// repeat the above any number of times separated by a comma
$( $in:literal -> $expect:literal ),*
) => {
// repeat this code for each match
$(
// $fn = name of the function
// $in = input number to the function
// $expect = expected output from the function
assert_eq!($fn($in), $expect);
)*
}
}
// function under test
fn double(v: usize) -> usize {
v * 2
}
// invoking the macro
test_many!(double: 0->0, 1->2, 2->4, 3->6, 4->8);
Here is an example of a macro to write multiple implementation blocks:
// trait we want to implement
trait BasePay {
fn base_pay() -> u32;
}
// structures we want the trait implemented on
struct Employee;
struct Supervisor;
struct Manager;
// macro to implement the trait
macro_rules! impl_base_pay {
(
// begin repetition
$(
// name of stucture for implementation, followed
// by a colon (:) followed by a number
$struct:ident: $pay:literal
),+ // repeat 1 or more times
$(,)? // optional trailing comma between entries
) => {
// begin repetition
$(
// our impl block using a metavariable
impl BasePay for $struct {
fn base_pay() -> u32 {
// just return the literal
$pay
}
}
)+ // repeat 1 or more times
}
}
// invoking the macro ...
impl_base_pay!(
Employee: 10,
Supervisor: 20,
Manager: 30,
);
// ... generates
impl BasePay for Employee {
fn base_pay() -> u32 {
10
}
}
impl BasePay for Supervisor {
fn base_pay() -> u32 {
20
}
}
impl BasePay for Manager {
fn base_pay() -> u32 {
30
}
}
Macros can be invoked from anywhere in a crate, so it is important to use absolute paths to functions, modules, types, etc. when the macro is to be used outside of where it is defined.
For std
, prefix the std
crate with two colons like so:
use ::std::collections::HashMap;
For items that exist in the current crate, use the special $crate
metavariable:
use $crate::modulename::my_item;